Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve.
نویسندگان
چکیده
1H NMR diffusion experiments performed on the signal of the metabolites in bovine optic nerve showed that the signal decay due to diffusion is bi-exponential with a slow and a fast diffusing component. Diffusion was measured as a function of the diffusion time, and the data were analyzed as a function of b and q values. Bi-exponential fit was used to analyze the data, and the results were compared with the displacement distribution profiles obtained from the q-space analysis of the data. This q-space analysis showed that the fast diffusing component has a broad displacement distribution and appears not to be restricted. On the other hand, the slow diffusing component appears to be highly restricted to milieu in the order of 1-2 microm. The orientation of the sample with respect to the axis for which diffusion was measured affected mainly the relative sizes of the populations of each component, but had only a small effect on the extracted apparent diffusion coefficients. These results from both the b and the q value analyses suggest that the slow diffusing component is related to restricted diffusion of these metabolites in the axonal fibers, while the fast diffusing component represents diffusion of metabolites in cells and along the long axis of the nerve fibers. It is concluded that q-space analysis of metabolite diffusion enables extraction of structural information about the sample, and that the diffusion of the metabolites in optic nerve is dictated mainly by the cellular medium and microstructure of the tissue.
منابع مشابه
Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging.
Diffusion-weighted NMR spectroscopy (MRS) was performed on isolated bovine optic nerve and rat brain (in vitro) to characterize the multiexponential water signal decay in diffusion experiments. q-Space analysis of the diffusion data was used to obtain structural information about the investigated neuronal tissues. This analysis provided displacement distribution profiles of the water in the sam...
متن کاملHigh b-value q-space diffusion MRS of nerves: structural information and comparison with histological evidence.
High b-value q-space diffusion MRS was used to study the diffusion characteristics of formalin-fixed swine optic and sciatic nerves over a large range of diffusion times (3.7-99.3 ms). The very short diffusion time range was studied with a 1 ms resolution. The displacement distribution profiles obtained were fitted to a bi-Gaussian function, and structural parameters were extracted from the q-s...
متن کاملDiffusion NMR spectroscopy.
MR offers unique tools for measuring molecular diffusion. This review focuses on the use of diffusion-weighted MR spectroscopy (DW-MRS) to non-invasively quantitate the translational displacement of endogenous metabolites in intact mammalian tissues. Most of the metabolites that are observed by in vivo MRS are predominantly located in the intracellular compartment. DW-MRS is of fundamental inte...
متن کاملCompartment-specific q-space analysis of diffusion-weighted data from isolated rhesus optic and sciatic nerves.
We investigated compartment-specific water diffusion properties in two widely structurally different isolated bovine nerves. Sciatic and optic nerves were immersed in saline containing Gd-DTPA(2+). Consequently, T(1) became non-monoexponential and fit well to a biexponential function. q-Space diffusion data were collected for each component. In the sciatic nerve, the slow-decaying component (T(...
متن کاملThe effect of rotational angle and experimental parameters on the diffraction patterns and micro-structural information obtained from q-space diffusion NMR: implication for diffusion in white matter fibers.
Diffusion NMR may provide, under certain experimental conditions, micro-structural information about confined compartments totally non-invasively. The influence of the rotational angle, the pulse gradient length and the diffusion time on the diffusion diffraction patterns and q-space displacement distribution profiles was evaluated for ensembles of long cylinders having a diameter of 9 and 20 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NMR in biomedicine
دوره 12 6 شماره
صفحات -
تاریخ انتشار 1999